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Abstract 

Multilead ECG signals exhibit spatial coherence that 

is often disregarded when each lead is filtered 

independently. This work proposes a spatially coherent 

filtering approach based on Laplace-Beltrami 

eigenfunction decomposition, which projects the signal 

onto a basis derived from torso geometry. Filtering is 

then performed in the spectral domain using the same 

temporal operations as the lead-wise method. Evaluation 

on realistic synthetic BSPM data showed consistent 

improvements across noise levels. At 5 dB SNR, the 

proposed method reduced RMSE by 64% and increased 

correlation by 24% relative to the unfiltered signal and 

outperformed lead-wise filtering by 31% in RMSE and 

5% in correlation. These results suggest that 

incorporating spatial structure into multilead ECG 

filtering enhances noise robustness without modifying the 

temporal pipeline. 

1. Introduction 

The acquisition and analysis of multilead 

electrocardiogram (ECG) recordings from the body 

surface, commonly employed in Body Surface Potential 

Mapping (BSPM) and non-invasive electrocardiographic 

imaging (ECGI), play a key role in characterizing cardiac 

electrical activity. However, the diagnostic utility of these 

recordings is frequently compromised by noise 

contamination, which can obscure relevant features. A 

significant limitation of conventional filtering approaches 

is that they typically operate on each ECG lead 

independently, disregarding the intrinsic spatial 

coherence across channels [1]. This coherence emerges 

because all leads capture projections of the same 

underlying electrical sources, shaped by the geometry and 

conductive properties of the torso [2]. Ignoring these 

spatial dependencies can distort the signal and degrade 

filtering performance. 

 Multivariate methods such as Principal Component 

Analysis (PCA) and Independent Component Analysis 

(ICA) attempt to address this limitation by processing 

multiple leads simultaneously [1]. However, these 

techniques rely on statistical criteria (e.g., variance 

maximization or independence) rather than explicitly 

incorporating the spatial structure defined by electrode 

placement. 

To overcome this limitation, we propose a novel 

approach grounded in differential geometry. Inspired by 

recent advances in signal decomposition on non-

Euclidean domains, particularly in neuroscience, we 

adopt the eigenfunctions of the Laplace-Beltrami (LB) 

operator as a spatial basis derived from the torso 

geometry [3–5]. These eigenfunctions form a natural set 

of spatial modes ordered by complexity, providing a 

principled framework to represent and process signals in 

a geometry-aware framework. 

This study evaluates an LB-based filtering 

methodology that projects multilead ECG data on this 

intrinsic spatial basis. The preprocessing is then applied 

in the LB spectral domain before reconstructing the 

signals in the original electrode space. Using realistic 

synthetic ECG data, we compare this approach to 

standard lead-wise filtering techniques, demonstrating its 

ability to improve signal quality while preserving spatial 

integrity. This is an essential step toward more robust and 

accurate non-invasive cardiac assessment. 

2. Methods 

2.1. Laplace-Beltrami Eigenfunction Basis 

The core of the proposed approach lies in representing 

the multilead ECG signal using a basis derived from the 

intrinsic geometry of the electrode arrangement on the 

torso surface. This is formalized through the Laplace-

Beltrami (LB) operator, denoted as Δ, defined on the 

manifold 𝓜 representing the torso surface. 

The eigenfunctions ψⱼ of the LB operator satisfy the 

Helmholtz equation: 
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     Δψⱼ(x) = λⱼ ψⱼ(x),          x ∈ 𝓜         (1) 

 

where λⱼ are real, non-negative eigenvalues ordered as 

0 = λ₀ ≤ λ₁ ≤ …. These eigenfunctions form a complete 

orthonormal basis for square-integrable functions on 𝓜, 

ordered by increasing spatial frequency. 

Any scalar field f(x) defined on the surface, such as the 

BSPM, can be represented as a linear combination of the 

LB eigenfunctions: 

 

      f(x) = Σ cⱼ ψⱼ(x)           (2) 

 

where the coefficients cⱼ = ⟨f, ψⱼ⟩ denote the projection 

of f onto each eigenfunction ψⱼ. 

For practical implementation, the continuous LB 

operator Δ is approximated by a discrete graph Laplacian 

matrix L ∈ ℝᴺˣᴺ, constructed using the cotangent-weight 

scheme in the torso surface with N nodes. To 

approximate the continuous eigenfunctions defined in Eq. 

(1), we solve the discrete eigenvalue problem LV = VΛ, 

where Λ is the diagonal matrix of eigenvalues λⱼ, and the 

columns of V are the discrete eigenvectors approximating 

the values of ψⱼ at the electrode locations. The number of 

eigenvectors is set to match the number of active 

electrodes (i.e., 128 channels). 

The resulting matrix Ψ = V ∈ ℝᴺˣᴺ defines an 

orthonormal basis. Interpolating the multilead ECG 

signals to the entire torso [6], the matrix BSPM ∈ ℝᴺˣᵀ is 

obtained, where T is the number of time samples. The 

signals can be projected onto the LB basis to get a 

coefficient matrix C ∈ ℝᴺˣᵀ: 

 

      C = Ψ† BSPM              (3) 

 

where Ψ† denotes the Moore-Penrose pseudoinverse 

of Ψ. Figure 1 illustrates this decomposition, showing an 

example BSPM, selected LB basis functions, and the 

resulting coefficient matrix C. 

The original signals can be reconstructed from the 

coefficient domain as: 

 

      BSPM = Ψ C              (4) 

 

This framework allows signal processing to be carried 

out in the LB spectral domain (C), exploiting spatial 

regularity, before mapping back to the body surface space 

(BSPM). 

2.2. Filtering Strategies for BSPM 

We compared the proposed spatially coherent filtering 

approach with a conventional lead-wise method. Both 

applied the same preprocessing steps—baseline removal 

and bandpass filtering—but in different domains. 

In the LB-based method, the BSPM was projected onto 

the LB eigenfunction basis. Each resulting spectral 

coefficient was processed with a zero-phase 4th-order 

Butterworth filter (0.5–70 Hz) and corrected for baseline 

wander using a moving median filter (0.5-second 

window, 50% overlap). The denoised signal was then 

reconstructed in the electrode space via the inverse 

projection. 

In the lead-wise method, each signal was filtered 

independently, applying the same temporal filtering and 

baseline correction directly in the electrode domain. This 

setup allows isolating the effect of operating in the LB 

spectral domain, while keeping the filtering logic 

identical. 

2.3. Synthetic Dataset Generation 

    Synthetic BSPM signals were generated using the 

FECGSYN framework [7], originally developed for 

maternal-fetal ECG modeling, and adapted here to 

simulate torso-projected cardiac activity. A dynamic 

dipole was projected onto a realistic torso mesh to 

synthesize a 128-lead BSPM over 10 seconds at 1000 Hz, 

with the clean signals used as ground truth. 

 
 

Figure 1. Laplace-Beltrami decomposition of a BSPM. Multilead ECG signals, selected eigenfunctions ψⱼ, associated 

coefficients cⱼ, and full spectral LB coefficient matrix representation. 
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To emulate realistic recording conditions, spatially 

coherent baseline wander (BW) and uncorrelated white 

Gaussian noise (WN) were superimposed. These noise 

components were combined and added to the clean 

signals to generate three noisy datasets at SNR levels of –

5, 5, and 15 dB, enabling controlled comparisons between 

filtering methods. 

2.4. Evaluation Metrics 

Filtering performance was quantitatively evaluated 

using Root Mean Square Error (RMSE) and Pearson 

Correlation Coefficient (CC), which respectively measure 

the magnitude of reconstruction error and the temporal 

similarity between the filtered and clean signals across 

channels. Both metrics were computed over all the signals 

and averaged across all leads.  

3. Results 

3.1. Analysis of LB Coefficients and 

Reconstructed Signals 

To illustrate how spatial coherence and noise manifest 

in the LB spectral domain, Figure 2 shows a 

representative BSPM signal and its corresponding LB 

coefficients under two conditions. Panel A depicts the 

clean signal, exhibiting high spatial coherence and well-

structured coefficients with energy concentrated in low-

frequency modes. Panel B shows the same signal 

corrupted with spatially coherent BW and uncorrelated 

WN, resulting in dispersed and temporally irregular 

coefficients. Highlighted regions illustrate the impact of 

BW on low-order modes and WN on higher-order 

components. 

Figure 3 illustrates BSPM signals from all leads under 

SNR = 5 dB to compare reconstruction quality across 

methods. Panel A shows the noisy signals (light blue) and 

the clean reference (dark blue), highlighting the impact of 

added noise. Panel B displays lead-wise filtered signals 

(orange), while Panel C shows LB-filtered signals 

(green), both overlaid with the clean reference. Visually, 

LB filtering better preserves the waveform morphology 

and amplitude consistency across leads. 

 
Figure 3. Visual comparison of BSPM signals across all 

leads under SNR = 5 dB. (A) Noisy input, (B) Lead-wise 

filtered signals, and (C) LB spectral filtered signals vs. 

clean references. 

 
 

Figure 2. LB decomposition of a BSPM under two conditions. (A) Clean signals yield structured coefficients 

concentrated in low-order modes. (B) Noisy signals show disrupted patterns due to baseline wander (BW) and white 

noise (WN), affecting low and high modes, respectively. 
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3.2. Quantitative Evaluation 

Filtering performance was assessed at three 

representative SNR levels (–5, 5 and 15 dB) using RMSE 

and Pearson CC. The results are shown in Figure 4. 

Both the LB-based and the benchmark lead-wise 

methods share similar preprocessing steps—baseline 

removal and bandpass filtering—but operate in different 

domains. Across all tested noise levels, the LB-based 

method consistently achieved lower RMSE and higher 

correlation, although the difference was moderate. 

At –5 dB, RMSE was 3.53 for the lead-wise method 

and 3.07 for the LB-based approach, while CC increased 

from 0.72 to 0.78. At 5 dB, RMSE was 1.73 vs. 1.20, and 

CC improved from 0.91 to 0.96. At 15 dB, RMSE was 

1.39 vs. 0.69, and CC increased from 0.94 to 0.99. 

These results indicate that, while both methods apply 

similar temporal filtering strategies, the use of the LB 

basis provides consistent improvements in denoising 

performance, particularly under moderate and low SNR 

conditions. 

 
Figure 4. Filtering performance at three SNR levels (-5, 5 

and 15 dB) using RMSE and Pearson CC. 

4. Discussion 

This study explored a spatially coherent filtering strategy 

for multilead ECG using Laplace-Beltrami eigenfunction 

decomposition. By projecting the signal onto a basis 

derived from torso geometry, the method captures spatial 

coherence across leads, which is often overlooked by 

standard filtering approaches. The LB-based method 

showed lower error and better correlation with the clean 

signal, especially under low SNR conditions. Compared 

to lead-wise filtering and methods like PCA or ICA, the 

LB basis aligns with electrode placement, providing a 

more structured representation. Beyond denoising, similar 

to its use in neuroimaging, LB decomposition could be 

employed to extract dominant spatial modes, characterize 

activation gradients, or reduce dimensionality while 

preserving spatial organization [4-5]. Future work will 

focus on clinical validation and adaptive strategies for 

mode selection and spectral filtering, offering a robust 

and anatomically grounded approach for multilead ECG 

processing. 

5.  Conclusion 

A spatially coherent filtering method for multilead 

ECG was presented using Laplace-Beltrami 

eigenfunctions. Filtering on this spatial basis preserves 

inter-lead coherence and consistently outperformed lead-

wise approaches, especially at low SNR. The framework 

also offers a structured representation of BSPM signals 

that may benefit further analysis. Future work will 

address clinical validation and broader applications. 
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