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Abstract

Multilead ECG signals exhibit spatial coherence that
is often disregarded when each lead is (filtered
independently. This work proposes a spatially coherent
filtering  approach  based on  Laplace-Beltrami
eigenfunction decomposition, which projects the signal
onto a basis derived from torso geometry. Filtering is
then performed in the spectral domain using the same
temporal operations as the lead-wise method. Evaluation
on realistic synthetic BSPM data showed consistent
improvements across noise levels. At 5 dB SNR, the
proposed method reduced RMSE by 64% and increased
correlation by 24% relative to the unfiltered signal and
outperformed lead-wise filtering by 31% in RMSE and
5% in correlation. These results suggest that
incorporating spatial structure into multilead ECG
filtering enhances noise robustness without modifying the
temporal pipeline.

1. Introduction

The acquisition and analysis of multilead
electrocardiogram (ECG) recordings from the body
surface, commonly employed in Body Surface Potential
Mapping (BSPM) and non-invasive electrocardiographic
imaging (ECGI), play a key role in characterizing cardiac
electrical activity. However, the diagnostic utility of these
recordings is frequently compromised by noise
contamination, which can obscure relevant features. A
significant limitation of conventional filtering approaches
is that they typically operate on each ECG lead
independently, disregarding the intrinsic  spatial
coherence across channels [1]. This coherence emerges
because all leads capture projections of the same
underlying electrical sources, shaped by the geometry and
conductive properties of the torso [2]. Ignoring these
spatial dependencies can distort the signal and degrade
filtering performance.

Multivariate methods such as Principal Component
Analysis (PCA) and Independent Component Analysis
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(ICA) attempt to address this limitation by processing
multiple leads simultaneously [1]. However, these
techniques rely on statistical criteria (e.g., variance
maximization or independence) rather than explicitly
incorporating the spatial structure defined by electrode
placement.

To overcome this limitation, we propose a novel
approach grounded in differential geometry. Inspired by
recent advances in signal decomposition on non-
Euclidean domains, particularly in neuroscience, we
adopt the eigenfunctions of the Laplace-Beltrami (LB)
operator as a spatial basis derived from the torso
geometry [3—5]. These eigenfunctions form a natural set
of spatial modes ordered by complexity, providing a
principled framework to represent and process signals in
a geometry-aware framework.

This study evaluates an LB-based filtering
methodology that projects multilead ECG data on this
intrinsic spatial basis. The preprocessing is then applied
in the LB spectral domain before reconstructing the
signals in the original electrode space. Using realistic
synthetic ECG data, we compare this approach to
standard lead-wise filtering techniques, demonstrating its
ability to improve signal quality while preserving spatial
integrity. This is an essential step toward more robust and
accurate non-invasive cardiac assessment.

2. Methods

2.1. Laplace-Beltrami Eigenfunction Basis

The core of the proposed approach lies in representing
the multilead ECG signal using a basis derived from the
intrinsic geometry of the electrode arrangement on the
torso surface. This is formalized through the Laplace-
Beltrami (LB) operator, denoted as A, defined on the
manifold M representing the torso surface.

The eigenfunctions y; of the LB operator satisfy the
Helmholtz equation:
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Figure 1. Laplace-Beltrami decomposition of a BSPM. Multilead ECG signals, selected eigenfunctions j, associated
coefficients cj, and full spectral LB coefficient matrix representation.

A =hyx),  xEM (1)

where A; are real, non-negative eigenvalues ordered as
0 =X <M < .... These eigenfunctions form a complete
orthonormal basis for square-integrable functions on M,
ordered by increasing spatial frequency.

Any scalar field f(x) defined on the surface, such as the
BSPM, can be represented as a linear combination of the
LB eigenfunctions:

f(x) =2 ¢ yi(x) 2

where the coefficients c; = (f, y;) denote the projection
of f onto each eigenfunction ;.

For practical implementation, the continuous LB
operator A is approximated by a discrete graph Laplacian
matrix L € RNN] constructed using the cotangent-weight
scheme in the torso surface with N nodes. To
approximate the continuous eigenfunctions defined in Eq.
(1), we solve the discrete eigenvalue problem LV = VA,
where A is the diagonal matrix of eigenvalues A;, and the
columns of V are the discrete eigenvectors approximating
the values of ; at the electrode locations. The number of
eigenvectors is set to match the number of active
electrodes (i.e., 128 channels).

The resulting matrix ¥ = V € R™N defines an
orthonormal basis. Interpolating the multilead ECG
signals to the entire torso [6], the matrix BSPM € RMT ig
obtained, where T is the number of time samples. The
signals can be projected onto the LB basis to get a
coefficient matrix C € RN<T:

C =¥{ BSPM 3)

where W1 denotes the Moore-Penrose pseudoinverse
of W. Figure 1 illustrates this decomposition, showing an
example BSPM, selected LB basis functions, and the
resulting coefficient matrix C.

The original signals can be reconstructed from the

coefficient domain as:
BSPM =¥ C 4

This framework allows signal processing to be carried
out in the LB spectral domain (C), exploiting spatial
regularity, before mapping back to the body surface space
(BSPM).

2.2.  Filtering Strategies for BSPM

We compared the proposed spatially coherent filtering
approach with a conventional lead-wise method. Both
applied the same preprocessing steps—baseline removal
and bandpass filtering—but in different domains.

In the LB-based method, the BSPM was projected onto
the LB eigenfunction basis. Each resulting spectral
coefficient was processed with a zero-phase 4th-order
Butterworth filter (0.5-70 Hz) and corrected for baseline
wander using a moving median filter (0.5-second
window, 50% overlap). The denoised signal was then
reconstructed in the electrode space via the inverse
projection.

In the lead-wise method, each signal was filtered
independently, applying the same temporal filtering and
baseline correction directly in the electrode domain. This
setup allows isolating the effect of operating in the LB
spectral domain, while keeping the filtering logic
identical.

2.3.  Synthetic Dataset Generation

Synthetic BSPM signals were generated using the
FECGSYN framework [7], originally developed for
maternal-fetal ECG modeling, and adapted here to
simulate torso-projected cardiac activity. A dynamic
dipole was projected onto a realistic torso mesh to
synthesize a 128-lead BSPM over 10 seconds at 1000 Hz,
with the clean signals used as ground truth.
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Figure 2. LB decomposition of a BSPM under two conditions. (A) Clean signals yield structured coefficients
concentrated in low-order modes. (B) Noisy signals show disrupted patterns due to baseline wander (BW) and white

noise (WN), affecting low and high modes, respectively.

To emulate realistic recording conditions, spatially
coherent baseline wander (BW) and uncorrelated white
Gaussian noise (WN) were superimposed. These noise
components were combined and added to the clean
signals to generate three noisy datasets at SNR levels of —
5,5, and 15 dB, enabling controlled comparisons between
filtering methods.

2.4. Evaluation Metrics

Filtering performance was quantitatively evaluated
using Root Mean Square Error (RMSE) and Pearson
Correlation Coefficient (CC), which respectively measure
the magnitude of reconstruction error and the temporal
similarity between the filtered and clean signals across
channels. Both metrics were computed over all the signals
and averaged across all leads.

3. Results

3.1. Analysis of LB Coefficients and
Reconstructed Signals

To illustrate how spatial coherence and noise manifest
in the LB spectral domain, Figure 2 shows a
representative BSPM signal and its corresponding LB
coefficients under two conditions. Panel A depicts the
clean signal, exhibiting high spatial coherence and well-
structured coefficients with energy concentrated in low-
frequency modes. Panel B shows the same signal
corrupted with spatially coherent BW and uncorrelated
WN, resulting in dispersed and temporally irregular
coefficients. Highlighted regions illustrate the impact of
BW on low-order modes and WN on higher-order
components.
Figure 3 illustrates BSPM signals from all leads under
SNR = 5 dB to compare reconstruction quality across

methods. Panel A shows the noisy signals (light blue) and
the clean reference (dark blue), highlighting the impact of
added noise. Panel B displays lead-wise filtered signals
(orange), while Panel C shows LB-filtered signals
(green), both overlaid with the clean reference. Visually,
LB filtering better preserves the waveform morphology
and amplitude consistency across leads.
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Figure 3. Visual comparison of BSPM signals across all
leads under SNR = 5 dB. (A) Noisy input, (B) Lead-wise
filtered signals, and (C) LB spectral filtered signals vs.
clean references.
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3.2.  Quantitative Evaluation

Filtering performance was assessed at three
representative SNR levels (-5, 5 and 15 dB) using RMSE
and Pearson CC. The results are shown in Figure 4.

Both the LB-based and the benchmark lead-wise
methods share similar preprocessing steps—baseline
removal and bandpass filtering—but operate in different
domains. Across all tested noise levels, the LB-based
method consistently achieved lower RMSE and higher
correlation, although the difference was moderate.

At -5 dB, RMSE was 3.53 for the lead-wise method
and 3.07 for the LB-based approach, while CC increased
from 0.72 to 0.78. At 5 dB, RMSE was 1.73 vs. 1.20, and
CC improved from 0.91 to 0.96. At 15 dB, RMSE was
1.39 vs. 0.69, and CC increased from 0.94 to 0.99.

These results indicate that, while both methods apply
similar temporal filtering strategies, the use of the LB
basis provides consistent improvements in denoising
performance, particularly under moderate and low SNR
conditions.
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Figure 4. Filtering performance at three SNR levels (-5, 5
and 15 dB) using RMSE and Pearson CC.

4. Discussion

This study explored a spatially coherent filtering strategy
for multilead ECG using Laplace-Beltrami eigenfunction
decomposition. By projecting the signal onto a basis
derived from torso geometry, the method captures spatial
coherence across leads, which is often overlooked by
standard filtering approaches. The LB-based method
showed lower error and better correlation with the clean

signal, especially under low SNR conditions. Compared
to lead-wise filtering and methods like PCA or ICA, the
LB basis aligns with electrode placement, providing a
more structured representation. Beyond denoising, similar
to its use in neuroimaging, LB decomposition could be
employed to extract dominant spatial modes, characterize
activation gradients, or reduce dimensionality while
preserving spatial organization [4-5]. Future work will
focus on clinical validation and adaptive strategies for
mode selection and spectral filtering, offering a robust
and anatomically grounded approach for multilead ECG
processing.

5. Conclusion

A spatially coherent filtering method for multilead
ECG  was  presented wusing  Laplace-Beltrami
eigenfunctions. Filtering on this spatial basis preserves
inter-lead coherence and consistently outperformed lead-
wise approaches, especially at low SNR. The framework
also offers a structured representation of BSPM signals
that may benefit further analysis. Future work will
address clinical validation and broader applications.
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